
UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 1

UNIT-V FILE SYSTEM INTERFACE and OPERATIONS

System files and data are kept in the computer system's memory, and when

these files are needed by an application, the operating system must have some way to

read the memory and access the appropriate files.

FILE

A file can be defined as a data structure which stores the sequence

of records. Files are stored in a file system, which may exist on a disk or in

the main memory. Files can be simple (plain text) or complex (specially-

formatted).

The collection of files is known as Directory. The collection of

directories at the different levels, is known as File System.

ATTRIBUTES OF THE FILE

1. Name
Every file carries a name by which the file is recognized in the file

system. One directory cannot have two files with the same name.

2. Identifier
Along with the name, Each File has its own extension which

identifies the type of the file. For example, a text file has the

extension .txt, A video file can have the extension .mp4.

3. Type
In a File System, the Files are classified in different types such as video files,

audio files, text files, executable files, etc.

4. Location
In the File System, there are several locations on which, the files can be stored.

Each file carries its location as its attribute.

5. Size
The Size of the File is one of its most important attribute. By size of the file,

we mean the number of bytes acquired by the file in the memory.

6. Protection
The Admin of the computer may want the different protections for the different

files. Therefore each file carries its own set of permissions to the different

group of Users.

7. Time and Date
Every file carries a time stamp which contains the time and date on which the

file is last modified.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 2

OPERATIONS ON THE FILE

The various operations which can be implemented on a file such as read, write,

open and close etc. are called file operations. These operations are performed by the

user by using the commands provided by the operating system.

Some common operations are as follows:

1. Create

This operation is used to create a file in the file system. It is the most widely

used operation performed on the file system. To create a new file of a particular type

the associated application program calls the file system. This file system allocates

space to the file. As the file system knows the format of directory structure, so entry of

this new file is made into the appropriate directory.

2. Open

This operation is the common operation performed on the file. Once the file is

created, it must be opened before performing the file processing operations. When the

user wants to open a file, it provides a file name to open the particular file in the file

system. It tells the operating system to invoke the open system call and passes the file

name to the file system.

3. Write

This operation is used to write the information into a file. A system call write is

issued that specifies the name of the file and the length of the data has to be written to

the file. Whenever the file length is increased by specified value and the file pointer is

repositioned after the last byte written.

4. Read

This operation reads the contents from a file. A Read pointer is maintained by

the OS, pointing to the position up to which the data has been read.

5. Re-position or Seek

The seek system call re-positions the file pointers from the current position to a

specific place in the file i.e. forward or backward depending upon the user's

requirement. This operation is generally performed with those file management

systems that support direct access files.

6. Delete

Deleting the file will not only delete all the data stored inside the file it is also

used so that disk space occupied by it is freed. In order to delete the specified file the

directory is searched. When the directory entry is located, all the associated file space

and the directory entry is released.

7. Truncate

Truncating is simply deleting the file except deleting attributes. The file is not

completely deleted although the information stored inside the file gets replaced.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 3

8. Close

When the processing of the file is complete, it should be closed so that all the

changes made permanent and all the resources occupied should be released. On

closing it deallocates all the internal descriptors that were created when the file was

opened.

9. Append

This operation adds data to the end of the file.

10. Rename

This operation is used to rename the existing file.

File Type

File type

Usual

extension Function

Executable exe, com, bin Read to run machine language program

Object obj, o Compiled, machine language not linked

Source Code
C, java, pas,

asm, a
Source code in various languages

Batch bat, sh Commands to the command interpreter

Text txt, doc Textual data, documents

Word

Processor
wp, tex, rrf, doc Various word processor formats

Archive arc, zip, tar Related files grouped into one compressed file

Multimedia mpeg, mov, rm For containing audio/video information

Markup xml, html, tex It is the textual data and documents

Library lib, a ,so, dll
It contains libraries of routines for

programmers

Print or View gif, pdf, jpg
It is a format for printing or viewing an ASCII

or binary file.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 4

FILE ACCESS METHODS

A file is a collection of bits/bytes or lines which are stored on secondary storage

devices like a hard drive (magnetic disks).

File access methods in OS are nothing but techniques to read data from the

system's memory. There are various ways in which we can access the files from the

memory like:

 Sequential Access

 Direct/Relative Access, and

 Indexed Sequential Access.

1. Sequential Access

The operating system reads the file word by word in sequential access method

of file accessing. A pointer is made, which first links to the file's base address. If the

user wishes to read the first word of the file, the pointer gives it to them and raises its

value to the next word. This procedure continues till the file is finished. It is the

most basic way of file access.

The data in the file is evaluated in

the order that it appears in the file and that

is why it is easy and simple to access a

file's data using sequential access

mechanism. For example, editors and

compilers frequently use this method to

check the validity of the code.

Advantages

 The sequential access mechanism is very easy to implement.

 It uses lexicographic order to enable quick access to the next entry.

Disadvantages

 Sequential access will become slow if the next file record to be retrieved is

not present next to the currently pointed record.

 Adding a new record may need relocating a significant number of records

of the file.

2. Direct (or Relative) Access

A Direct/Relative file access

mechanism is mostly required with the

database systems. In the majority of

the circumstances, we require

filtered/specific data from the

database, and in such circumstances,

sequential access might be highly

inefficient.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 5

Assume that each block of storage holds four records and that the record we

want to access is stored in the tenth block. In such a situation, sequential access will

not be used since it will have to traverse all of the blocks to get to the required record,

while direct access will allow us to access the required record instantly.

The direct access mechanism requires the OS to perform some additional tasks

but eventually leads to much faster retrieval of records as compared to the sequential

access.

Advantages

 The files can be retrieved right away with direct access mechanism,

reducing the average access time of a file.

 There is no need to traverse all of the blocks that come before the required

block to access the record.

Disadvantages

 The direct access mechanism is typically difficult to implement due to its

complexity.

 Organizations can face security issues as a result of direct access as the

users may access/modify the sensitive information. As a result, additional

security processes must be put in place.

3. Indexed Sequential Access

This method is practically similar to the pointer to pointer concept in which we

store an address of a pointer variable containing address of some other variable/record

in another pointer variable.

The indexes, similar to a book's index

(pointers), contain a link to various blocks

present in the memory. To locate a record in

the file, we first search the indexes and then

use the pointer to pointer concept to navigate

to the required file.

Primary index blocks contain the links

of the secondary inner blocks which contains

links to the data in the memory.

Advantages

 If the index table is appropriately arranged, it accesses the records very

quickly.

 Records can be added at any position in the file quickly.

Disadvantages of Indexed Sequential Access

 When compared to other file access methods, it is costly and less efficient.

 It needs additional storage space.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 6

DIRECTORY STRUCTURE

Directory can be defined as the listing of the related files on the disk. The

directory may store some or the entire file attributes.

To get the benefit of different file systems on the different operating systems, A

hard disk can be divided into the number of partitions of different sizes. The partitions

are also called volumes or mini disks.

Each partition must have at least one directory in which, all the files of the

partition can be listed. A directory entry is maintained for each file in the directory

which stores all the information related to that file.

A directory can be viewed as a file which contains the Meta data of the bunch

of files.

Every Directory supports a number of common operations on the file:

 File Creation

 Search for the file

 File deletion

 Renaming the file

 Traversing Files

 Listing of files

SINGLE LEVEL DIRECTORY

The simplest method is to have one big list of all the files on the disk. The

entire system will contain only one directory which is supposed to mention all the files

present in the file system. The directory contains one entry per each file present on the

file system.

Advantages

1. Implementation is very simple.

2. If the sizes of the files are very small then the searching becomes faster.

3. File creation, searching, deletion is very simple since we have only one

directory.

Disadvantages

 Naming problem: Users cannot have the same name for two files.

 Grouping problem: Users cannot group files according to their needs.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 7

TWO-LEVEL DIRECTORY

In two level directory systems, we can create a separate directory for each user.

There is one master directory which contains separate directories dedicated to each

user. For each user, there is a different directory present at the second level,

containing group of user's file. The system doesn't let a user to enter in the other user's

directory without permission.

Path name: Due to two levels there is a path name for every file to locate that

file.

Advantage

 we can have the same file name for different users.

 Searching is efficient in this method.

TREE- STRUCTURED DIRECTORY

In Tree structured directory system, any directory entry can either be a file or

sub directory. Tree structured directory system overcomes the drawbacks of two level

directory system. The similar kind of files can now be grouped in one directory.

The directory is maintained in the form of a tree. Searching is efficient and

also there is grouping capability. We have absolute or relative path name for a file.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 8

ACYCLIC-GRAPH STRUCTURED DIRECTORY

The tree structured directory system doesn't allow the same file to exist in

multiple directories therefore sharing is major concern in tree structured directory

system. We can provide sharing by making the directory an acyclic graph. In this

system, two or more directory entry can point to the same file or sub directory. That

file or sub directory is shared between the two directory entries.

GENERAL-GRAPH DIRECTORY

This is an extension to the acyclic-graph directory. In the general-graph

directory, there can be a cycle inside a directory.

In the above image, we can see that a cycle is formed in the user 2 directory.

Although it provides greater flexibility, it is complex to implement this structure.

Advantages

 Compared to the others, the General-Graph directory structure is more

flexible.

 Cycles are allowed in the directory for general-graphs.

Disadvantages

 It costs more than alternative solutions.

 Garbage collection is an essential step here.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 9

PROTECTION IN FILE SYSTEM

In computer systems, a lot of user’s information is stored, the objective of the

operating system is to keep safe the data of the user from the improper access to the

system.

Protection can be provided in number of ways. For a single laptop system, we

might provide protection by locking the computer in a desk drawer or file cabinet. For

multi-user systems, different mechanisms are used for the protection.

Types of Access

The files which have direct access of the any user have the need of protection.

The files which are not accessible to other users doesn’t require any kind of

protection.

The mechanism of the protection provide the facility of the controlled access

by just limiting the types of access to the file. Access can be given or not given to any

user depends on several factors, one of which is the type of access required.

Several different types of operations can be controlled:

 Read – Reading from a file.

 Write – Writing or rewriting the file.

 Execute – Loading the file and after loading the execution process starts.

 Append – Writing the new information to the already existing file, editing

must be end at the end of the existing file.

 Delete – Deleting the file which is of no use and using its space for the

another data.

 List – List the name and attributes of the file.

Operations like renaming, editing the existing file, copying; these can also be

controlled. There are many protection mechanism. each of them mechanism have

different advantages and disadvantages and must be appropriate for the intended

application.

Access Control

There are different methods used by different users to access any file. The

general way of protection is to associate identity-dependent access with all the files

and directories a list called access-control list (ACL) which specify the names of the

users and the types of access associate with each of the user.

The main problem with the access list is their length. If we want to allow

everyone to read a file, we must list all the users with the read access. This technique

has two undesirable consequences:

Constructing such a list may be tedious and unrewarding task, especially if we

do not know in advance the list of the users in the system.

Previously, the entry of the any directory is of the fixed size but now it changes

to the variable size which results in the complicates space management. These

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 10

problems can be resolved by use of a condensed version of the access list. To

condense the length of the access-control list, many systems recognize three

classification of users in connection with each file:

 Owner – Owner is the user who has created the file.

 Group – A group is a set of members who has similar needs and they are

sharing the same file.

 Universe – In the system, all other users are under the category called universe.

The most common recent approach is to combine access-control lists with the

normal general owner, group, and universe access control scheme. For

example: Solaris uses the three categories of access by default but allows

access-control lists to be added to specific files and directories when more fine-

grained access control is desired.

Other Protection Approaches

The access to any system is also controlled by the password. If the use of

password is random and it is changed often, this may be result in limit the effective

access to a file.

The use of passwords has a few disadvantages:

 The number of passwords are very large so it is difficult to remember

the large passwords.

 If one password is used for all the files, then once it is discovered, all

files are accessible; protection is on all-or-none basis.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 11

FILE SYSTEM STRUCTURE

File System provide efficient access to the disk by allowing

data to be stored, located and retrieved in a convenient way. A file

System must be able to store the file, locate the file and retrieve

the file.

Most of the Operating Systems use layering approach for

every task including file systems. Every layer of the file system is

responsible for some activities.

The image shown, elaborates how the file system is divided

in different layers, and also the functionality of each layer.

 When an application program asks for a file, the first request is directed to

the logical file system. The logical file system contains the Meta data of the

file and directory structure. If the application program doesn't have the

required permissions of the file then this layer will throw an error. Logical

file systems also verify the path to the file.

 Generally, files are divided into various logical blocks. Files are to be stored

in the hard disk and to be retrieved from the hard disk. Hard disk is divided

into various tracks and sectors. Therefore, in order to store and retrieve the

files, the logical blocks need to be mapped to physical blocks. This mapping

is done by File organization module. It is also responsible for free space

management.

 Once File organization module decided which physical block the

application program needs, it passes this information to basic file system.

The basic file system is responsible for issuing the commands to I/O control

in order to fetch those blocks.

 I/O controls contain the codes by using which it can access hard disk. These

codes are known as device drivers. I/O controls are also responsible for

handling interrupts.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 12

ALLOCATION METHODS

There are various methods which can be used to allocate disk space to the files.

Selection of an appropriate allocation method will significantly affect the performance

and efficiency of the system. Allocation method provides a way in which the disk will

be utilized and the files will be accessed.

There are following methods which can be used for allocation.

1. Contiguous Allocation.

2. Linked Allocation

3. Indexed Allocation

4. Linked Indexed Allocation

5. Multilevel Indexed Allocation

Contiguous Allocation

A single continuous set of blocks

is allocated to a file at the time of file

creation. Thus, this is a pre-allocation

strategy, using variable size portions.

The file allocation table needs just a

single entry for each file, showing the

starting block and the length of the file.

This method is best from the point of

view of the individual sequential file.

Multiple blocks can be read in at

a time to improve I/O performance for

sequential processing. It is also easy to

retrieve a single block. For example, if

a file starts at block b, and the ith block

of the file is wanted, its location

on secondary storage is simply b+i-1.

Disadvantage

 External fragmentation will occur, making it difficult to find contiguous

blocks of space of sufficient length. A compaction algorithm will be

necessary to free up additional space on the disk.

 Also, with pre-allocation, it is necessary to declare the size of the file at the

time of creation.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 13

Linked Allocation(Non-contiguous allocation)

Allocation is on an

individual block basis. Each block

contains a pointer to the next block

in the chain. Again the file table

needs just a single entry for each

file, showing the starting block and

the length of the file. Although pre-

allocation is possible, it is more

common simply to allocate blocks

as needed. Any free block can be

added to the chain. The blocks need

not be continuous. An increase in

file size is always possible if a free disk block is available. There is no external

fragmentation because only one block at a time is needed but there can be internal

fragmentation but it exists only in the last disk block of the file.

Disadvantage

 Internal fragmentation exists in the last disk block of the file.

 There is an overhead of maintaining the pointer in every disk block.

 If the pointer of any disk block is lost, the file will be truncated.

 It supports only the sequential access of files.

Indexed Allocation

It addresses many of the problems of

contiguous and chained allocation. In this

case, the file allocation table contains a

separate one-level index for each file: The

index has one entry for each block allocated

to the file.

The allocation may be on the basis of

fixed-size blocks or variable-sized blocks.

Allocation by blocks eliminates external

fragmentation, whereas allocation by

variable-size blocks improves locality.

This allocation technique supports

both sequential and direct access to the file

and thus is the most popular form of file

allocation.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 14

FREE SPACE MANAGEMENT

It is not easy work for an operating system to allocate and de-allocate memory

blocks (managing free space) simultaneously. The operating system uses various

methods for adding free space and freeing up space after deleting a file. There are

various methods using which a free space list can be implemented. We are going to

explain them below-

1. Bitmap or Bit Vector :

A bit vector is a most frequently used method to implement the free space list.

A bit vector is also known as a Bit map. It is a series or collection of bits in which

each bit represents a disk block.

The values taken by the bits are either 1 or 0. If the block bit is 1, it means the

block is empty and if the block bit is 0, it means the block is not free. It is allocated to

some files. Since all the blocks are empty initially so, each bit in the bit vector

represents 0.

"Free block number" can be defined as that block which does not contain any

value, i.e., they are free blocks.

The formula to find a free block number is :

[Block number = (number of bits per words)*(number of 0-value word) + Offset of

first 1 bit]

2. Linked List :

A linked list is another approach for free space management in an operating

system. In it, all the free blocks inside a disk are linked together in a linked list. These

free blocks on the disk are linked together by a pointer. These pointers of the free

block contain the address of the next free block and the last pointer of the list points to

null which indicates the end of the linked list.

This technique is not enough to traverse the list because we have to read each

disk block one by one which requires I/O time.

The operating system can use this linked list to allocate memory blocks to

processes as needed.

3. Grouping

The grouping technique is also called the "modification of a linked list

technique". In this method, first, the free block of memory contains the addresses of

the n-free blocks. And the last free block of these n free blocks contains the addresses

of the next n free block of memory and this keeps going on. This technique separates

the empty and occupied blocks of space of memory.

4. Counting

In memory space, several files are created and deleted at the same time. For

which memory blocks are allocated and de-allocated for the files. Creation of files

occupy free blocks and deletion of file frees blocks.

When there is an entry in the free space, it consists of two parameters-

 "address of first free disk block (a pointer)" and "a number 'n'".

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 15

SYSTEM CALLS

1. create

The create() function is used to create a new empty file in C. We can specify

the permission and the name of the file which we want to create using the create()

function. It is defined inside <unistd.h> header file and the flags that are passed as

arguments are defined inside <fcntl.h> header file.

Syntax of create() in C

 int create(char *filename, mode_t mode);

Parameter

 filename: name of the file which you want to create

 mode: indicates permissions of the new file.

Return Value

 return first unused file descriptor (generally 3 when first creating use in the

process because 0, 1, 2 fd are reserved)

 return -1 when an error

2. open

The open() function in C is used to open the file for reading, writing, or both.

It is also capable of creating the file if it does not exist. It is defined

inside <unistd.h> header file and the flags that are passed as arguments are defined

inside <fcntl.h> header file.

Syntax of open() in C

 int open (const char* Path, int flags);

Parameters

 Path: Path to the file which we want to open.

o Use the absolute path beginning with “/” when you are not working

in the same directory as the C source file.

o Use relative path which is only the file name with extension, when

you are working in the same directory as the C source file.

 flags: It is used to specify how you want to open the file. We can use the

following flags.

Flags Description

O_RDONLY Opens the file in read-only mode.

O_WRONLY Opens the file in write-only mode.

O_RDWR Opens the file in read and write mode.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 16

Flags Description

O_CREAT Create a file if it doesn’t exist.

O_EXCL Prevent creation if it already exists.

O_ APPEND Opens the file and places the cursor at the end of the contents.

O_ASYNC Enable input and output control by signal.

O_CLOEXEC Enable close-on-exec mode on the open file.

O_NONBLOCK Disables blocking of the file opened.

O_TMPFILE Create an unnamed temporary file at the specified path.

3. close

The close() function in C tells the operating system that you are done with a

file descriptor and closes the file pointed by the file descriptor. It is defined

inside <unistd.h> header file.

Syntax of close() in C

 int close(int fd);

Parameter

 fd: File descriptor of the file that you want to close.

Return Value

 0 on success.

 -1 on error.

4. read

From the file indicated by the file descriptor fd, the read() function reads the

specified amount of bytes cnt of input into the memory area indicated by buf. The

read() function is also defined inside the <unistd.h> header file.

Syntax of read() in C

 size_t read (int fd, void* buf, size_t cnt);

Parameters

 fd: file descriptor of the file from which data is to be read.

 buf: buffer to read data from

 cnt: length of the buffer

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 17

Return Value

 return Number of bytes read on success

 return 0 on reaching the end of file

 return -1 on error

 return -1 on signal interrupt

5. write

Writes cnt bytes from buf to the file or socket associated with fd. cnt should

not be greater than INT_MAX (defined in the limits.h header file). If cnt is zero,

write() simply returns 0 without attempting any other action.

The write() is also defined inside <unistd.h> header file.

Syntax of write() in C

 size_t write (int fd, void* buf, size_t cnt);

Parameters

 fd: file descriptor

 buf: buffer to write data to.

 cnt: length of the buffer.

Return Value

 returns the number of bytes written on success.

 return 0 on reaching the End of File.

 return -1 on error.

 return -1 on signal interrupts.

6. ioctl

 ioctl() is referred to as Input and Output Control.

 ioctl is a system call for device-specific input/output operations and other

operations which cannot be expressed by regular system calls.

7. fork

 A new process is created by the fork() system call.

 A new process may be created with fork() without a new program being run-

the new sub-process simply continues to execute exactly the same program

that the first (parent) process was running.

 It is one of the most widely used system calls under process management.

8. exit

 The exit() system call is used by a program to terminate its execution.

 The operating system reclaims resources that were used by the process after

the exit() system call.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 18

9. exec

 A new program will start executing after a call to exec()

 Running a new program does not require that a new process be created first:

any process may call exec() at any time. The currently running program is

immediately terminated, and the new program starts executing in the context

of the existing process.

10. wait

The wait() system call suspends execution of the current process until one of

its children terminates. The call wait(&status) is equivalent to:

 waitpid(-1, &status, 0);

11. waitpid

The waitpid() system call suspends execution of the current process until a

child specified by pid argument has changed state. By default, waitpid() waits only

for terminated children, but this behaviour is modifiable via the options argument, as

described below.

The value of pid can be:

Tag Description

< -1
meaning wait for any child process whose process group ID is

equal to the absolute value of pid.

-1 meaning wait for any child process.

0
meaning wait for any child process whose process group ID is

equal to that of the calling process.

> 0
meaning wait for the child whose process ID is equal to the

value of pid.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 19

DISK SCHEDULING ALGORITHMS

A process needs two type of time, CPU time and IO time. For I/O, it requests

the Operating system to access the disk.

However, the operating system must be fare enough to satisfy each request and

at the same time, operating system must maintain the efficiency and speed of process

execution.

The technique that operating system uses to determine the request which is to

be satisfied next is called disk scheduling.

Seek Time

Seek time is the time taken in locating the disk arm to a specified track where

the read/write request will be satisfied.

Rotational Latency

It is the time taken by the desired sector to rotate itself to the position from

where it can access the R/W heads.

Transfer Time

It is the time taken to transfer the data.

Disk Access Time

Disk access time is given as,

Disk Access Time = Rotational Latency + Seek Time + Transfer Time

Disk Response Time

It is the average of time spent by each request waiting for the IO operation.

Purpose of Disk Scheduling

The main purpose of disk scheduling algorithm is to select a disk request from

the queue of IO requests and decide the schedule when this request will be processed.

Goal of Disk Scheduling Algorithm

 Fairness

 High throughout

 Minimal traveling head time

Disk Scheduling Algorithms

The list of various disks scheduling algorithm is given below. Each algorithm is

carrying some advantages and disadvantages. The limitation of each algorithm leads

to the evolution of a new algorithm.

 FCFS scheduling algorithm

 SSTF (shortest seek time first) algorithm

 SCAN scheduling

 C-SCAN scheduling

 LOOK Scheduling

 C-LOOK scheduling

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 20

FCFS Scheduling Algorithm

It is the simplest Disk Scheduling algorithm. It services the IO requests in the

order in which they arrive. There is no starvation in this algorithm, every request is

serviced.

Disadvantages

 The scheme does not optimize the seek time.

 The request may come from different processes therefore there is the

possibility of inappropriate movement of the head.

Example

Consider the following disk request sequence for a disk with 100 tracks 45, 21,

67, 90, 4, 50, 89, 52, 61, 87, 25. Head pointer starting at 50 and moving in left

direction. Find the number of head movements in cylinders using FCFS scheduling.

Solution

Number of cylinders moved by the head

= (50-45)+(45-21)+(67-21)+(90-67)+(90-4)+(50-4)+(89-50)+(61-52)+(87-61)+(87-25)

= 5 + 24 + 46 + 23 + 86 + 46 + 49 + 9 + 26 + 62

= 376

SSTF Scheduling Algorithm

Shortest seek time first (SSTF) algorithm selects the disk I/O request which

requires the least disk arm movement from its current position regardless of the

direction.

It reduces the total seek time as compared to FCFS.

It allows the head to move to the closest track in the service queue.

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 21

Disadvantages

 It may cause starvation for some requests.

 Switching direction on the frequent basis slows the working of algorithm.

 It is not the most optimal algorithm.

Example

Consider the following disk request sequence for a disk with 100 tracks

45, 21, 67, 90, 4, 89, 52, 61, 87, 25. Head pointer starting at 50. Find the number of

head movements in cylinders using SSTF scheduling.

Number of cylinders = 5 + 7 + 9 + 6 + 20 + 2 + 1 + 65 + 4 + 17 = 136

SCAN Algorithm

It is also called as Elevator Algorithm. In this algorithm, the disk arm moves

into a particular direction till the end, satisfying all the requests coming in its path and

then it turns back and moves in the reverse direction satisfying requests coming in its

path.

It works in the way an elevator works, elevator moves in a direction completely

till the last floor of that direction and then turns back.

Example

Consider the following disk request sequence for a disk with 100 tracks

98, 137, 122, 183, 14, 133, 65, 78. Head pointer starting at 54 and moving in left

direction. Find the number of head movements in cylinders using SCAN scheduling.

Number of Cylinders = 40 + 14 + 65 + 13 + 20 + 24 + 11 + 4 + 46 = 237

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 22

C-SCAN algorithm

In C-SCAN algorithm, the arm of the disk moves in a particular direction

servicing requests until it reaches the last cylinder, then it jumps to the last cylinder of

the opposite direction without servicing any request then it turns back and start

moving in that direction servicing the remaining requests.

Example

Consider the following disk request sequence for a disk with 100 tracks

98, 137, 122, 183, 14, 133, 65, 78. Head pointer starting at 54 and moving in left

direction.

No. of cylinders crossed = 40 + 14 + 199 + 16 + 46 + 4 + 11 + 24 + 20 + 13 = 387

LOOK Scheduling

It is like SCAN scheduling Algorithm to some extant except the difference that,

in this scheduling algorithm, the arm of the disk stops moving inwards (or outwards)

when no more request in that direction exists. This algorithm tries to overcome the

overhead of SCAN algorithm which forces disk arm to move in one direction till the

end regardless of knowing if any request exists in the direction or not.

Example

Consider the following disk request sequence for a disk with 100 tracks

98, 137, 122, 183, 14, 133, 65, 78. Head pointer starting at 54 and moving in left

direction.

Number of cylinders crossed = 40 + 51 + 13 + +20 + 24 + 11 + 4 + 46 = 209

UNIT – V CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 23

C LOOK Scheduling

C Look Algorithm is similar to C-SCAN algorithm to some extent. In this

algorithm, the arm of the disk moves outwards servicing requests until it reaches the

highest request cylinder, then it jumps to the lowest request cylinder without servicing

any request then it again start moving outwards servicing the remaining requests.

It is different from C SCAN algorithm in the sense that, C SCAN force the disk

arm to move till the last cylinder regardless of knowing whether any request is to be

serviced on that cylinder or not.

Example

Consider the following disk request sequence for a disk with 100 tracks

98, 137, 122, 183, 14, 133, 65, 78. Head pointer starting at 54 and moving in left

direction. Find the number of head movements in cylinders using C LOOK

scheduling.

Number of cylinders crossed = 11 + 13 + 20 + 24 + 11 + 4 + 46 + 169 = 298

